
2020-08-08

1

ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D.

Douglas Wilhelm Harder, M.Math. LEL
hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Arrays

2
Arrays

Outline

• In this lesson, we will:

– Describe the limitations of variables

– Introduce local arrays

– Look at initializing arrays

– Describe their design and use

• We will see a number of applications

– Consider all the consequences of using arrays

3
Arrays

Limitations of primitive data types

• To this point, we have only had the possibility of using:

– A fixed number of parameters

– A fixed number of local variables

• Each parameter or local variable must be separately declared

4
Arrays

Limitations of primitive data types

• Suppose we want to query the user for three values:
int main() {

 int a1{};

 int a2{};

 int a3{};

 std::cout << "Enter an integer: ";

 std::cin >> a1;

 std::cout << "Enter a second integer: ";

 std::cin >> a2;

 std::cout << "Enter a third integer: ";

 std::cin >> a3;

 std::cout << "The average of these three is "

 << (a1 + a2 + a3)/3.0 << std::endl;

 return 0;

}

2020-08-08

2

5
Arrays

Limitations of primitive data types

• Suppose we want to calculate the average of five values:

 double average(double x0, double x1, double x2,

 double x3, double x4) {

 return (x0 + x1 + x2 + x3 + x4)/5.0;

 }

• Suppose we want to calculate the average of seven values:

 double average(double x0, double x1, double x2,

 double x3, double x4, double x5,

 double x6) {

 return (x0 + x1 + x2 + x3 + x4 + x5 + x6)/7.0;

 }

6
Arrays

Limitations of primitive data types

• Suppose we want to calculate the average of five values:

 double average(double x0, double x1, double x2,

 double x3, double x4) {

 return (x0 + x1 + x2 + x3 + x4)/5.0;

 }

• Suppose we want to calculate the average of seven values:

 double average(double x0, double x1, double x2,

 double x3, double x4, double x5,

 double x6) {

 return (x0 + x1 + x2 + x3 + x4 + x5 + x6)/7.0;

 }

7
Arrays

Limitations of primitive data types

• In some cases, we don’t know how much data we have or require:

– You don’t always know how much memory will be required

• For example, your list of your favour
movies may change over time:

The Good, the Bad and the Ugly

A Bridge Too Far

The Godfather Series

Lawrence of Arabia

In the Heat of the Night

The Matrix

Kill Bill

The Bridge on the River Kwai

Doctor Zhivago

Dr. Strangelove

Apocalypse Now

A Clockwork Orange

Beaufort

Forest Gump

Letters from Iwo Jima

Thomas Crown Affair (both)

The Day of the Jackal

Star Wars

On Her Majesty's Secret Service

Living Daylights

Hurt Locker

The Alien Series

Ghostbusters

The Bourne Series

8
Arrays

Arrays

• The logical approach is to use an approach similar to a mathematical
sequence:

a0, a1, a2, a3, a4, a5, …, an – 1

• Each entry in this sequence of n items can take on a different value

– The first could be the most recent voltage reading,

 the next the next-most recent reading, and so on

– The wiring in a circuit may have n nodes labeled 0 through n – 1

• Nodal analysis allows you to find the voltages at each of the nodes

2020-08-08

3

9
Arrays

Arrays

• We will now look at:

– Array declarations

– Initializing arrays

– Accessing array entries

– Assigning to array entries

10
Arrays

Array declarations

• An array of capacity n is identified by the declaration

 typename array_identifier[n]{};

– The capacity n must be a non-negative number

• The compiler allocates sufficiently many contiguous bytes to store n
instances of the given datatype

– Examples:

 int temperatures[10]{}; // an array of 10 integers

 double voltages[23]{}; // an array of 23 floating-

 // point numbers

11
Arrays

Array entries

• The entries of an array store values of the given type and may be
used like local variables

– The entries of

 int data[4]{}; // an array of 4 integers

 are access with

 std::cout << data[0] << data[1]

 << data[2] << data[3] << std::endl;

 std::cout << (data[0] + data[1]

 + data[2] + data[3]) << std::endl;

• The indices of

 datatype array_name[n];

 always go from 0 to n - 1

12
Arrays

Array initialization

• Consider this uninitialized array:
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 double data[4];

 std::cout << data[0] << std::endl;

 std::cout << data[1] << std::endl;

 std::cout << data[2] << std::endl;

 std::cout << data[3] << std::endl;

 return 0;

}

The output is
 0
 0
 2.0733e-317
 2.0731e-317

These two, by chance, are zero

No {}

2020-08-08

4

13
Arrays

Array initialization

• Instead, we can use a for loop and a loop variable to index the array:
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 double data[4];

 for (int k{0}; k < 4; ++k) {

 std::cout << data[k] << std::endl;

 }

 return 0;

}

The output is
 3.1842e-314
 2.12199e-314
 2.12199e-314
 0

This entry, by chance, is zero

14
Arrays

Array initialization

• This array has its four entries initialized:
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 double data[4]{47.2, 48.3, 48.9, 49.4};

 for (int k{0}; k < 4; ++k) {

 std::cout << data[k] << std::endl;

 }

 return 0;

}

The output is
 47.2
 48.3
 48.9
 49.4

15
Arrays

Array initialization

• To initialize all entries to the default value, use {}:
 #include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 double data[4]{};

 for (int k{0}; k < 4; ++k) {

 std::cout << data[k] << std::endl;

 }

 return 0;

}

The output is
 0
 0
 0
 0

16
Arrays

Array initialization

• If there are insufficient initial values, the default value is used:
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 double data[4]{93.5, 97.2};

 for (int k{0}; k < 4; ++k) {

 std::cout << data[k] << std::endl;

 }

 return 0;

}

The output is
 93.5
 97.2
 0
 0

2020-08-08

5

17
Arrays

Array initialization

• Too many initial values results in a compile-time error
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 double data[4]{93.5, 97.2, 96.3, 98.4, 97.9};

 for (int k{0}; k < 4; ++k) {

 std::cout << data[k] << std::endl;

 }

 return 0;

} example.cpp:8:33: error: too many initializers for 'double [4]'
 double data[4]{93.5, 97.2, 96.3, 98.4, 97.9};
 ^

18
Arrays

Initial capacity

• The array capacity need not be known at compile time:
// Function definitions

int main() {

 unsigned int n{};

 std::cout << "How many entries do you want? ";

 std::cin >> n;

 double data[n]{}; // All entries initialized to 0.0

 for (int k{0}; k < n; ++k) {

 std::cout << "Enter entry " << k << ": ";

 std::cin >> data[k];

 }

 return 0;

}

19
Arrays

Array properties

• Like other local variables:

– Arrays go out of scope

– May or may not be initialized

• An array of double is not a double

– Suppose we declare:

 double data[10]{};

• You can use data[3] in an arithmetic expression

• You cannot use data in an arithmetic expression

– Suppose we declare:

 bool flags[5]{};

• You can use flags[2] in a logical expression

• You cannot use flags in a logical expression

20
Arrays

Applications

• For the next four applications,

 we will assume that we have an array with n entries:
// Function definitions

int main() {

 unsigned int n{};

 std::cout << "How many entries do you want? ";

 std::cin >> n;

 assert(n > 0);

 double data[n]{};

 for (int k{0}; k < n; ++k) {

 std::cout << "Enter entry " << k << ": ";

 std::cin >> data[k];

 }

 // Carry on from here...

2020-08-08

6

21
Arrays

Applications

• Let us find the average value:

 double sum{0.0};

 for (unsigned int k{0}; k < n; ++k) {

 sum += data[k];

 }

 double average{ sum/n };

 std::cout << "The average is " << average << std::endl;

1

1 n

k

k

x x
n

22
Arrays

Applications

• Let us find the standard deviation value:

 sum = 0.0;

 for (unsigned int k{0}; k < n; ++k) {

 sum += (data[k] - average)*(data[k] - average);

 }

 double std_dev{ std::sqrt(sum/n) };

 std::cout << "The standard deviation is "

 << std_dev << std::endl;

2

1

1 n

k

k

x x
n

23
Arrays

Applications

• Let us find the minimum and maximum values:

 double minimum{ data[0] };

 double maximum{ data[0] };

 for (unsigned int k{1}; k < n; ++k) {

 if (data[k] < minimum) {

 minimum = data[k];

 } else if (data[k] > maximum) {

 maximum = data[k];

 }

 }

 std::cout << "The range of the array is ["

 << minimum << ", " << maximum << "]" << std::endl;

24
Arrays

Applications

• Let us find the maximum entry and swap it with the last:
 double maximum = data[0];

 unsigned int max_index{0};

 for (unsigned int k{1}; k < n; ++k) {

 if (data[k] > maximum) {

 maximum = data[k];

 max_index = k;

 }

 }

 // Swap the two entries

 double tmp{data[max_index]};

 data[max_index] = data[n - 1];

 data[n - 1] = tmp;

 return 0;

}

2020-08-08

7

25
Arrays

Implementation of arrays

• The array

 double data[5]{3.7, 4.0, 2.9, 8.6, 1.5};

 stores five double in contiguous memory

0 3.7

1 4.0

2 2.9

3 8.6

4 1.5

26
Arrays

Exceeding array bounds

• Problem: What will happen if you try to access or assign to
 data[-1] or data[5] or even data[299792458]?

– Other programming languages check to ensure you do not exceed
the array bounds

– C++ just goes to the corresponding location…

-2 ?

-1 ?

 0 3.7

 1 4.0

 2 2.9

 3 8.6

 4 1.5

 5 ?

 6 ?

27
Arrays

Exceeding array bounds

• One common mistake is to loop from 1 to n:

 double sum{0.0};

 for (unsigned int k{1}; k <= n; ++k) {

 sum += data[k];

 }

 double average{ sum/n };

 std::cout << "The average is " << average << std::endl;

-2 ?

-1 ?

 0 3.7

 1 4.0

 2 2.9

 3 8.6

 4 1.5

 5 ?

 6 ?

28
Arrays

Summary

• Following this lesson, you now

– Understand how to declare an array as a local variable and initialize
its entries

– Know how to access and assign to array entries

• That array entries can be treated like local variables or parameters
of the same type

• Arrays cannot be used in arithmetic or logical expressions

– Know you can step through an array with a for loop

– Seen a number of applications with arrays

– Understand accessing entries outside the array bounds is dangerous

2020-08-08

8

29
Arrays

References

[1] No references?

30
Arrays

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

31
Arrays

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

